Lecture 17

Flow Networks, Ford-Fulkerson Method

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos

Flow Networks

Flow Networks

12
16

13

20

Flow Networks

Figure (a) is flow network of a shipping company, where:

12
16 20

13 4

Flow Networks

Figure (a) is flow network of a shipping company, where:

® Vertices represent cities. s & 7 are the source & sink cities.

12
16 20

13 4

Flow Networks

Figure (a) is flow network of a shipping company, where:
® Vertices represent cities. s & 7 are the source & sink cities.

® The number on any (i, v) edge is the maximum number of packets that can go from

i1 to v per day.

12
16 20

13 4

Flow Networks

12
16

13

20

Flow Networks

Goal: Find the maximum number of packets that can be shipped from s it the packets received and

12
16 20

13 4

Flow Networks

Goal: Find the maximum number of packets that can be shipped from s it the packets received and

sent by intermediate cities are equal in numbers.

12
16 20

13 4

Flow Networks

Goal: Find the maximum number of packets that can be shipped from s it the packets received and

sent by intermediate cities are equal in numbers.

12
16 20

13 4

(a) (b)

Flow Networks

Goal: Find the maximum number of packets that can be shipped from s it the packets received and

sent by intermediate cities are equal in numbers.

12
16 20

13 4

/

max packets = 23

(b)

Flow Networks

16

13

12

14

20

Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:

12
16 20

13 4
14

Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

12
16 20

13 4
14

Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.
e |[f(u,v) € E,then (v,u) & E.

12
16 20

13 4
14

Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)

12
16 20

13 4
14

Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)

® It (u,v) & E, we define c(u,v) = 0. No selt-loops are present.

12
16 20

13 4
14

Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)
® It (u,v) & E, we define c(u,v) = 0. No selt-loops are present.

® Two distinguished vertices: source s (no incoming edges) and sink 7 (no outgoing edges).

12
16 20

13 4
14

Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)
® It (u,v) & E, we define c(u,v) = 0. No selt-loops are present.

® Two distinguished vertices: source s (no incoming edges) and sink 7 (no outgoing edges).

® Foreveryv € V,some s ~ v ~ [path exists. Hence, |E| > | V| — 1.

12
16 20

13 4
14

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:

® Capacity constraint: Forall u,v € V,

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:

® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

® Flow conservation: For all u € V\{s, 1},

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

® Flow conservation: Forall u € V\{s, ¢}, Zf(v, u) = Zf(u, V).

vevV vevV

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

® Flow conservation: Forall u € V\{s, ¢}, Zf(v, U) = Zf(u, V).
veV ‘ veV

Total flow in

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

® Flow conservation: Forall u € V\{s, ¢}, Zf(v, u) = Zf(u, V).

veV ‘ veV \

. Total flow out
Total flow in

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

® Flow conservation: Forall u € V\{s, ¢}, Zf(v, u) = Zf(u, V).

vevV vevV

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

® Flow conservation: Forall u € V\{s, ¢}, Zf(v, u) = Zf(u, V).

vevV vevV

Example:

11/14

Flows

Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
® Capacity constraint: Forallu,v €V, 0 < f(u,v) < c(u,v).

® Flow conservation: Forall u € V\{s, ¢}, Zf(v, u) = Zf(u, V).

vevV vevV

Example:
Flow/Capacity

/

19/20

4/4

11/14

Defn: Value |f| of flow [is defined as flow out of s, i.e.,

Defn: Value | /| of flow [is defined as flow out of s, i.e., || = Zf(s, V).

vevV

Defn: Value | /| of flow [is defined as flow out of s, i.e., || = Zf(s, V).

vevV

Maxflow:

Defn: Value | /| of flow [is defined as flow out of s, i.e., || = Zf(s, V).

vevV

Maxflow:

Input: A tflow network G with source s and sink 7.

fl =), fis,v).

vevV

Defn: Value |f| of flow [is defined as flow out of s, i.e.,

Maxflow:

Input: A tflow network G with source s and sink 7.

Output: Flow of maximum value.

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):

Example: 12

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

Example:

0/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
2. Find an s ~ ¢t path P where every edge has f < ¢

Example:

0/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
2. Find an s ~ ¢t path P where every edge has f < ¢

Example:

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):

1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P

Example:

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):

1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P

Example:

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
2. Find an s ~ ¢t path P where every edge has f < ¢

3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck

Example:

0/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Example:

0/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Example:

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Example:

7/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Example:

7/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Example:

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Example:

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Example:

11/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck
5. Return f
Required s ~ t path not present
Example:

19/20 /
(D

4/4

11/14

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck
5. Return f
Required s ~ t path not present
Example:

19/20 /
(D

4/4
11/14 \

Terminates with |f|=23

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):

1.

gl g B2 e

Start with flow f = 0O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

\

Is the algorithm really correct?

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

\

Is the algorithm really correct? No.

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):

1.

gl g B2 e

Start with flow f = 0O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Counter-Example:

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Counter-Example:

20/20 0/10

>

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Counter-Example:

20/20 0/10

>

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Counter-Example:

20/20

20/20 \

Terminates with | f|= 20

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

gl g B2 e

Counter-Example:

20/20

20/20 \

Terminates with | f|= 20

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck
5. Return f
Max-flow is 30
Counter-Example: /

20/20

20/20 \

Terminates with | f|= 20

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck
5. Return f
Max-flow is 30
Counter-Example: /

20/20

20/20 \

Terminates with | f|= 20

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck
5. Return f
Max-flow is 30
Counter-Example: /

20/20

20/20 \

Terminates with | f|= 20

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck
5. Return f
Max-flow is 30
Counter-Example: /

20/20

20/20 \

Terminates with | f|= 20

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, 1):
1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
4. Keep repeating line 2 & 3 until you get stuck
5. Return f
Max-flow is 30
Counter-Example: /

20/20

20/20 \

Terminates with | f|= 20

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):

1.

S

Start with flow f = O for every edge
Find an s ~ t path P where every edge has f < ¢

Augment flow f with the least c — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):
1. Start with flow f = O for every edge
Find an s ~ t path P where every edge has f < ¢

Augment flow f with the least c — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

S

Observation: The above algorithm never decreases tlow along any edge.

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):
1. Start with flow f = O for every edge
Find an s ~ t path P where every edge has f < ¢

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck

Return f

S

Observation: The above algorithm never decreases tlow along any edge.

Possible Fix: May be we should allow decreasing/redistributing flows.

Finding Max Flow: An Attempt

Naive-Max-Flow(G, s, ?):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < c

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck
Return f

S

Observation: The above algorithm never decreases tlow along any edge.

Possible Fix: May be we should allow decreasing/redistributing flows.

\

Need to learn a new structure for that!

Residual Networks

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Example:

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Example:

20/20

20/30

20/20

G

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Example:

20/20 <:::>

20/30

20/20

G G,

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Example:

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

20/20 ‘(/jgl/,/’(:::>

20/30

20/20

G G,

Example:

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Example:

20/20 20

20/30

20/20

G G,

of)0 @

10

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Example:

20/20 20 10

20/30

20/20

G G,

20 10

10

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Example:

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Forward edges to use the remaining capacity

Example: /

Residual Networks

Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Backward edges to decrease the flow on some edges

N\

Example:

Augmenting Flows via Residual Networks

Example:

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.

Example:

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.

Example:

20/20 20 10

20/30

20/20

G G,

20 10

10 20

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.

® Forevery (u,v) € P:

Example:

20/20 20 10

20/30

20/20

G G,

20 10

10 20

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.
® Forevery (u,v) € P:
o If (u,v) € E(G), add o tlow to (i, v) in .

Example:

20/20 20 10

20/30

20/20

G G,

20 10

10 20

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.
® Forevery (u,v) € P:

o If (u,v) € E(G), add o tlow to (i, v) in .

o If (v,u) € E(G), subtract 0 flow from (v, u) in f.

Example:

20/20 20 10

20/30

20/20

G G,

20 10

10 20

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.
® Forevery (u,v) € P:

o If (u,v) € E(G), add o tlow to (i, v) in .

o If (v,u) € E(G), subtract 0 flow from (v, u) in f.

Example:

20/20 20 10

20/30

20/20

G G,

20 10

10 20

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.
® Forevery (u,v) € P:

o If (u,v) € E(G), add o tlow to (i, v) in .

o If (v,u) € E(G), subtract 0 flow from (v, u) in f.

Example:

20/20 20 10

10/30

20/20

G G,

20 10

10 20

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.
® Forevery (u,v) € P:

o If (u,v) € E(G), add o tlow to (i, v) in .

o If (v,u) € E(G), subtract 0 flow from (v, u) in f.

Example:

20/20 20 10

10/30

20/20

G G,

20 10

10 20

Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.

® Forevery (u,v) € P:
o If (u,v) € E(G), add & flow to (i1, v) in f g What about capacity,

4 (conservation constraints?
o If (v,u) € E(G), subtract 0 flow from (v, u) in f.

Example:

20/20 20 10

10/30

20/20

G G,

20 10

10 20

