Lecture 17

Flow Networks, Ford-Fulkerson Method

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos
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Flow Networks

Figure (a) is flow network of a shipping company, where:
® Vertices represent cities. s & 7 are the source & sink cities.

® The number on any (i, v) edge is the maximum number of packets that can go from

i1 to v per day.
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Goal: Find the maximum number of packets that can be shipped from s it the packets received and

sent by intermediate cities are equal in numbers.
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Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)
® It (u,v) & E, we define c(u,v) = 0. No selt-loops are present.

® Two distinguished vertices: source s (no incoming edges) and sink 7 (no outgoing edges).

® Foreveryv € V,some s ~ v ~ [ path exists. Hence, |E| > | V| — 1.
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Defn: Let G = (V, E) be flow network with a capacity function ¢ and source s and sink 7.

A flow in G is a real-valued function f: VX V — R that satisfies the following two properties:
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Defn: Value |f| of flow [ is defined as flow out of s, i.e.,

Maxflow:

Input: A tflow network G with source s and sink 7.

Output: Flow of maximum value.
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1. Start with flow f = O for every edge

2. Find an s ~ ¢t path P where every edge has f < ¢
3. Augment flow f with the least ¢ — fon P along P
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Naive-Max-Flow(G, s, ?):
1. Start with flow f = O for every edge
Find an s ~ ¢ path P where every edge has f < c

Augment flow f with the least ¢ — f on P along P
Keep repeating line 2 & 3 until you get stuck
Return f
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Observation: The above algorithm never decreases tlow along any edge.

Possible Fix: May be we should allow decreasing/redistributing flows.
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Need to learn a new structure for that!
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Defn: For a given tlow network G = (V, E) and flow f, its residual network is G, = (V, £y),

where for every edge (1, v) in G, E, contains:

o Forward edges: Edge (i, v) with capacity c(u, v) = c(u,v) — f(u,v) > 0

® Backward edges: Edge (v, 1) with capacity c/(v, u) = f(u,v) > 0

Backward edges to decrease the flow on some edges

N\
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Augmenting Flows via Residual Networks

® Find s ~ t path P in the residual network Grand its bottleneck capacity o.

® Forevery (u,v) € P:
o If (u,v) € E(G), add & flow to (i1, v) in f g What about capacity,

4 (conservation constraints?
o If (v,u) € E(G), subtract 0 flow from (v, u) in f.
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